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 OpenEEmeter 4.0 Final Model Specification and Testing 
 Results 
 This document contains three sections: 

 1.  A technical summary of improvements from OpenEEmeter 3.0 to 4.0 

 2.  Results of testing the OpenEEmeter 4.0 

 3.  A detailed OpenEEmeter 4.0 model specification 

 I.  OpenEEmeter 4.0 Daily Model Summary and Specification 

 Technical Summary of the 4.0 Model and Improvements 

 While the OpenEEmeter 3.0 model has provided an important start for the open source, 

 meter-based measurement of gas and electric savings from demand side energy programs, 

 it has long been known that further development could improve model performance in key 

 areas. In particular, the 3.0 model exhibits systematic seasonal bias, in particular for 

 populations of gas meters, as well as weekend/weekday bias, observed frequently among 

 populations of commercial electric meters. The OpenEEmeter 3.0 Daily model also carries 

 high computational cost; it can take up to 1 minute on average to fit a meter. This expense 

 can be burdensome for users, especially for large datasets. 

 The OpenEEmeter 4.0 Daily model has improved these core performance elements. 

 Starting with computational cost, the 4.0 model makes improvements on two main fronts. 

 First, the determination of balance points was modified from an exhaustive grid search to a 

 global optimization scheme. Second, instead of explicitly fitting multiple models for the 

 various possible combinations of heating, cooling, and temperature-independent load, 

 inspiration was taken from Lasso regression and model coefficients are penalized. This 

 enables use of only a single model fitting in which the lasso regression will favor model 

 simplicity (as opposed to generating all possible candidate model formulations). This idea of 

 a cost-benefit analysis is a common theme in OpenEEmeter 4.0; the cost of additional model 

 complexity is justified by its benefit. Computational time improvements are as high as 100x 

 (60 seconds to 0.5 seconds) in legacy mode (matching OpenEEmeter 3.0 within ~5% on an 

 individual meter level). If OpenEEmeter 3.0-like results are desired, this performance increase 
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 can be fully realized. However, this speed is leveraged in OpenEEmeter 4.0 to fit a 

 better-performing model. 

 In OpenEEmeter 4.0 seasonal bias has been reduced by 84% and weekday/weekend bias by 

 95% through a combination of selective splitting into segments based upon season and 

 weekday/weekend designations as well as updating the model formula to a smoothed 

 3-segment, piecewise linear model. When we detect that the building is behaving 

 fundamentally differently, we enable splitting of time periods and selection of unique 

 sub-models. These additional complexities are only allowed if their benefit overcomes a 

 penalization barrier. To ensure improvements are predictive and the penalization parameters 

 are reasonable, this model was tested extensively using a 10-fold, shuffle split cross 

 validation scheme on ~6,000 meters. Of the 6,000 meters, 4,000 were residential gas, 

 1,000 electric residential, and 1,000 electric commercial meters. This distribution was chosen 

 because seasonal bias was prominent in residential gas, but improvement here was not to be 

 made at the expense of electric performance. Additional out-of-sample spot checks have 

 shown that the changes to OpenEEmeter are robust and globally relevant meaning that 

 OpenEEmeter 4.0 meets not only its stated goals but is an overall predictive improvement 

 over OpenEEmeter 3.0. 

 2 



 II.  Results of Final Model Testing 

 Bias Summary Table:  Comparison between OpenEEmeter  3.0 Daily and OpenEEmeter 4.0 
 Daily of fractional biases during the noted timeframes for each sample studied: 

 OpenEEmeter 3.0 vs. OpenEEmeter 4.0 in “3.0 Mode”:  Distribution of differences in 
 baseline model among individual data points (Res Gas sample): 
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 Residential Gas 

 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Distributions  of baseline model seasonal bias: 
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 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Distributions  of baseline model weekend bias: 
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 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Population-level  seasonal error profiles in the 
 baseline model as a function of the difference between the average daily temperature and 
 the heating balance point temperature: 
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 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Population-level  thermal lag error profiles in the 
 baseline model as a function of the difference between the average daily temperature and 
 the previous day’s temperature: 
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 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Individual meter  model examples: 
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 Residential Electric 

 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Distributions  of baseline model weekend bias: 
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 Commercial Electric 

 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Distributions  of baseline model weekend bias: 
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 OpenEEmeter 3.0 vs. OpenEEmeter 4.0:  Individual meter  model examples: 
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 OpenEEmeter 4.0 in “3.0 Mode” on Billing Data: 
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 III.  Model Specifications 

 1.  Model Options: 

 1.1.  Date times are broken into 3 segments: summer, shoulder, and winter days. 

 1.1.1.  Defaults that have been tested in the United States are summer = 
 (June, July, August, September), shoulder = (March, April, May, 
 October), winter = (January, February, November, December). 

 1.2.  Date times should be defined to be either a weekday or weekend. 

 1.2.1.  Note: This nomenclature will be retained throughout this document, 
 but in the model formulation weekdays are not required to refer to 
 Monday - Friday nor weekends to be Saturday and Sunday. 

 1.2.2.  Defaults that have been tested are weekdays = (Monday - Friday), 
 weekends = (Saturday, Sunday) 

 1.3.  An uncertainty significance level should be assigned. The standard is α = 0.1. 

 2.  Data 

 2.1.  The following data is required: 

 2.1.1.  Date time 

 2.1.2.  Temperature 

 2.1.3.  Observed meter reading 

 2.2.  Date times should be assigned as a summer (su), shoulder (sh), or winter (wi) 
 day based on prior model options. 

 2.3.  Date times should be assigned as weekday (wd) or weekend (we) based on 
 prior model options. 

 2.4.  Temperature determination should conform with existing OpenEEmeter 3.0 
 requirements. 

 3.  Elimination of Allowed Splits 

 Each combination of season and weekday/weekend can potentially be assigned an 
 independent mode (a “split”). The purpose of the split elimination step is to shrink the 
 number of these possible splits so that the overall number of permutations can be 
 reduced, thus limiting computation time. 

 3.1.  Each segment (wd-su, we-su, …, we-wi) are fit with confidence ellipses based 
 on their observed values and temperatures. For a given confidence ellipse, the 
 major axis is multiplied by 1.4 and the minor axis by 0.89. These values were 
 determined by testing. 
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 3.1.1.  These confidence ellipses can be further refined by removing outliers 
 using a 2-D median filter and/or other methods. 

 3.1.1.1.  In OpenEEmeter 4.0, a median filter with a size of 5 is used in 
 conjunction with a filter to remove values outside 3 standard 
 deviations of the confidence ellipse 

 3.1.2.  The confidence ellipses are compared against each other. 

 3.1.2.1.  If, for a given season, both the weekday and weekend data 
 overlaps with another season then the first season is not 
 allowed to be an independent split 

 3.1.2.2.  If, within any season, the weekday data overlaps with the 
 weekend data, then a weekday/weekend split is not allowed 

 4.  Model Fitting 

 The “model” (or “full model”) refers to the combination of submodels selected to 
 predict energy consumption for the full year. Sub-models refer to the individual 
 models of a split, whether that be we-su, wd-su, or any combination of 
 wd/we-su-sh-wi. Submodels that do not have a weekday/weekend split are instead 
 referred to as full week (fw) submodels. 

 4.1.  All possible permutations of weekday/weekend and seasonal splits are 
 determined based on the prior allowed splits and internal model configuration 
 settings. A full model must represent a full year of seasons and days and 
 follows OpenEEmeter 3.0 data sufficiency requirements. 

 4.2.  The permutations or potential model splits have components in common that 
 can be fit independently and combined to form the full model. All unique 
 components are identified and receive a preliminarily fit. The actual fitting 
 procedure can be found in section 5. 

 4.2.1.  For example, A full model consisting of [fw-su + we-sh +  wd-sh  + 
 fw-si] shares common submodels (underlined) with another full model 
 consisting of [wd-su_wi+  wd-sh  + we-su_sh_wi]. 

 4.3.  All potential full models are compared using a modified  Bayesian Information 
 Criterion  (BIC) selection criterion given as Eq. 1.  The full model with the lowest 
 selection criterion is the model selected for the final fitting step. 

 (1) 

 where x is the loss value from optimization divided by the loss value of the 
 unsplit model, both of which are functions of the residuals, K is the number of 
 splits + 1, and N is the number of datapoints in the model. The formulation and 
 coefficients were determined through testing. 
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 4.4.  Once the best potential model has been identified, its submodels are refined 
 and refit according to section 5. 

 5.  Preliminary Submodel Fitting 

 The purpose of the initial submodel fitting is not to get the best model possible, but 
 instead to get an inexpensive estimate that serves to narrow down the potential 
 model splits to a final selection that will then be further refined. In this step, 
 submodels are all smoothed piecewise linear functions, with possible smoothing, that 
 follow the following rules. 

 5.1.  Heating slopes are constrained to always be zero or negative. 

 5.2.  The temperature independent region is an intercept-only function. 

 5.3.  Cooling slopes are constrained to always be zero or positive. 

 5.4.  Smoothing is performed using an exponentially decaying function, Eq. 2, for 
 the heating model and Eq. 3 for the cooling model. 

 (2) 

 (3) 

 where  β  is the slope coefficient,  k  is the smoothing  parameter,  T  bp  is the 
 balance point temperature, and  C  is the intercept. 

 5.5.  When optimizing the coefficients, k is derived from a 0 - 100% maximum 
 smoothing factor (  k  %  ), and  T  bp  is also shifted such  that the slope remains in the 
 same temperature location. This pushes the  T  bp  to  the right when smoothing is 
 being applied in the heating model and left in the cooling model. These are 
 defined in Eqs. 4 - 6. 

 (4) 

 (5) 

 (6) 

 where HDD refers to the heating model and CDD the cooling model. 

 5.5.1.  If the sum of  k  %  is greater than 100%, they are divided  by their sum to 
 enforce that the summation is at maximum 100%. 

 5.6.  The initial guesses for the coefficients are determined by using the DIRECT 
 global optimization algorithm. The algorithm changes only the balance points 
 and the rest of the model is set using a 3 segment, non-smoothed piecewise 
 linear function as described previously. The algorithm seeks to minimize the 
 sum of squared error (SSE). 
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 5.7.  The initial guesses are used as inputs into the Subplex local optimization 
 algorithm to minimize a Lasso regression-inspired objective function. The 
 objective function is a function of the residuals from the model function and 
 the observed values as well as the coefficient values. 

 5.7.1.  Each coefficient in the model has its own penalty factor that is 
 combined by taking the sum of the absolute values of these penalty 
 factors multiplied by 0.001. 

 5.7.2.  The heating and cooling balance points are penalized by taking the 
 minimum distance between them and the minimum and maximum 
 observed temperature, respectively. An additional penalty is added to 
 each of them that is half the distance between the two balance points. 

 5.7.2.1.  The balance point penalties serve to push the balance points 
 towards each other and to the temperature extremes. 

 5.7.3.  The slopes are penalized by first scaling them by the standard deviation 
 of the temperature divided by the standard deviation of observed 
 meter values from within the region being modeled. They are multiplied 
 by an additional penalty (1E30) if the number of data points is less than 
 minimum required. 

 5.7.3.1.  The slope penalties push the slopes towards zero, heavily in the 
 case of not meeting the minimum number of data points 
 requirement. 

 5.7.4.  The smoothing parameters, computed as 0 - 100%, are normalized in 
 the same manner as 5.5.1 and then multiplied by their associated slopes 
 divided by 2. 

 5.7.4.1.  The effect of the smoothing parameters is to push them 
 towards zero, but more heavily if slopes they are smoothing are 
 larger. 

 6.  Final Submodel Fitting 

 The final model uses the inputs from the preliminary models to minimize the weighted 
 SSE (wSSE) between the observed values and the model. This utilizes the adaptive 
 loss function and does not use the Lasso regression-inspired penalty. 

 6.1.  Bounds are set so the balance points cannot create distinct modeling regions 
 that contain less than the minimum number of designated points. 

 6.2.  The adaptive loss is a continuous function of a shape parameter,  α  , and 
 median-standardized residuals. 

 6.2.1.  The shape parameter can make the function replicate a SSE (  α  = 2), 
 smoothed L1 (  α  = 1), Cauchy (  α  = 0), or Welsh loss  (  α  = ∞) depending 
 on its value. It is determined each time the function is called through a 
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 single variable optimization and is penalized to prefer SSE, it will choose 
 more outlier resilient values if appropriate. 

 6.2.2.  The median standardized residuals are unique for each section of the 
 function (heating, temperature-independent, and cooling). The raw 
 residuals undergo a simple outlier rejection scheme using the standard 
 1.5 Inner Quartile Range (IQR) rule. Their medians are then subtracted 
 from and they undergo another 1.5 IQR rule to estimate the locations of 
 outliers among the shifted residuals. The shifted residuals are divided 
 by this value to get the median-standardized residuals. 

 6.2.3.  The adaptive loss function is converted to weights based on the 
 optimum  α  . 

 6.3.  Each squared residual is multiplied by its weight and then summed to obtain 
 the net wSSE. 

 7.  Use with Monthly Data 

 When monthly consumption data are the subject of the calculation, there are not 
 enough data points to support model splitting as described above. 

 7.1.  With monthly data, OpenEEmeter 4.0 should be used in legacy mode. 
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