CalTRACK
  • CalTRACK Methods
    • CalTRACK Process
    • CalTRACK Compliance
    • Project Updates
    • Technical Working Group >
      • Technical Appendix
      • Issues and Evidence
    • CalTRACK History
    • Stakeholders
  • LFE OpenEEmeter
    • OpenEEmeter Overview
    • Github Code
    • EEweather
    • Documentation
  • FLEXmeter
    • GRIDmeter
    • Energy Differential Privacy
  • Contact

Time of Week and Temperature Model CalTRACK Application for Site Specific Hourly Savings

5/14/2018

0 Comments

 
Week Fourteen & Fifteen CalTRACK Update
Review of hourly method proposals continued in week fourteen of CalTRACK 2.0 and will be finalized at the 5/24 working group meeting.  Lawrence Berkeley National Lab’s Time-of-Week Temperature (TOWT) model is the specification to be used in CalTRACK 2.0. Mathieu et al. describe the application of TOWT models in Quantifying Changes in Building Electricity Use, with Application to Demand Response.
Overview of TOWT models:
As energy efficiency finds its legs as a grid resource, time dependent savings will be essential to the value proposition. Pay-for-performance programs can leverage this value with accurate building-level energy savings calculations at granular time intervals. TOWT models are one method for calculating energy savings at the hourly level.
Strengths:    
  1. Aggregated portfolios for pay-for-performance programs may have high variability in hourly energy consumption due to its nature. This variation is evident in figure 1, which shows load patterns over time for an office building, furniture store, and a bakery. The TOWT model addresses this variability in the following manner:
  2. An “occupancy” proxy is determined using a linear regression model and allows for the hourly data to be segmented based on  a building’s occupancy status.
  3. Several “time-of-week” independent variables (one for each hour of the week) are included in the main linear regression model to capture hourly load variation. For example, a restaurant may regularly consume more energy on Friday nights because the restaurant has more customers on Friday nights. This type of variation will be controlled for by the “time-of-week” covariate.
  4. The temperature covariate uses 7 bins of fixed temperature ranges instead of employing a grid search to find the balance points. Due to higher amounts of data in hourly methods, the fixed temperature ranges provide a simpler solution without significant drawbacks.
Picture
Weaknesses:
  1. By nature, calculating hourly energy savings requires more granular data. This can make data sufficiency problematic.
  2. Similar to daily methods, energy consumption on weekends or holidays may be different than typical days.
  3. There is autocorrelation in the errors of parameter estimates, which complicates uncertainty calculations.
Homework:
  1. Review draft of billing and daily methods write-up
  2. Review proposals for hourly guidelines on GitHub
  3. The next working group meeting is on Thursday, 5/24
0 Comments



Leave a Reply.

      Sign Up for Technical Working Group Updates

    Subscribe to Newsletter
    The purpose of this blog is to provide a high-level overview of CalTrack  progress.
    ​
    For a deeper understanding or to provide input on technical aspects of CalTrack, refer to the GitHub issues page (
    https://github.com/CalTRACK-2/caltrack/issues). 
    Recordings
    2019 CalTRACK Kick Off:

    CalTRACK 2.0 
    July 19, 2018
    June 28, 2018
    June 7, 2018
    May 24, 2018
    May 3, 2018
    April 12, 2018
    March 29, 2018
    March 15, 2018
    March 1, 2018
    ​
    February 15, 2018
    February 1, 2018

    Archives

    February 2023
    January 2023
    December 2022
    November 2022
    July 2019
    March 2019
    February 2019
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018

    RSS Feed

Creative Commons License
Creative Commons Attribution-NoDerivatives 4.0 International License.